2023年6月21日发(作者:)
SQLServer批量插⼊数据的两种⽅法
SQLServer 批量插⼊数据的两种⽅法2009-07-27 19:31在SQL Server 中插⼊⼀条数据使⽤Insert语句,但是如果想要批量插⼊⼀堆数据的话,循环使⽤Insert不仅效率低,⽽且会导致SQL⼀系统性能问题。下⾯介绍SQL Server⽀持的两种批量数据插⼊⽅法:Bulk和表值参数(Table-Valued Parameters)。 运⾏下⾯的脚本,建⽴测试数据库和表值参数。代码如下:--Create DataBase
create database BulkTestDB;
go
use BulkTestDB;
go
--Create Table
Create table BulkTestTable(
Id int primary key,
UserName nvarchar(32),
Pwd varchar(16))
go
--Create Table Valued
CREATE TYPE BulkUdt AS TABLE
(Id int,
UserName nvarchar(32),
Pwd varchar(16))下⾯我们使⽤最简单的Insert语句来插⼊100万条数据,代码如下:代码如下:Stopwatch sw = new Stopwatch();
SqlConnection sqlConn = new SqlConnection(
tionStrings["ConnStr"].ConnectionString);//连接数据库
SqlCommand sqlComm = new SqlCommand(); SqlCommand sqlComm = new SqlCommand();
dText = ("insert into BulkTestTable(Id,UserName,Pwd)values(@p0,@p1,@p2)");//参数化SQL
("@p0", );
("@p1", ar);
("@p2", r);
dType = ;
tion = sqlConn;
();
try
{
//循环插⼊100万条数据,每次插⼊10万条,插⼊10次。
for (int multiply = 0; multiply < 10; multiply++)
{
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
ters["@p0"].Value = count;
ters["@p1"].Value = ("User-{0}", count * multiply);
ters["@p2"].Value = ("Pwd-{0}", count * multiply);
();
eNonQuery();
();
}
//每插⼊10万条数据后,显⽰此次插⼊所⽤时间
ine(("Elapsed Time is {0} Milliseconds", dMilliseconds));
}
}
catch (Exception ex)
{
throw ex;
}
finally
{
();
}
ne();耗时图如下:
由于运⾏过慢,才插⼊10万条就耗时72390 milliseconds,所以我就⼿动强⾏停⽌了。
下⾯看⼀下使⽤Bulk插⼊的情况:
bulk⽅法主要思想是通过在客户端把数据都缓存在Table中,然后利⽤SqlBulkCopy⼀次性把Table中的数据插⼊到数据库
代码如下:复制代码 代码如下:public static void BulkToDB(DataTable dt)
{
SqlConnection sqlConn = new SqlConnection(
tionStrings["ConnStr"].ConnectionString);
SqlBulkCopy bulkCopy = new SqlBulkCopy(sqlConn);
ationTableName = "BulkTestTable";
ize = ;
try
{
();
if (dt != null && != 0)
oServer(dt);
} }
catch (Exception ex)
{
throw ex;
}
finally
{
();
if (bulkCopy != null)
();
}
}
public static DataTable GetTableSchema()
{
DataTable dt = new DataTable();
ge(new DataColumn[]{
new DataColumn("Id",typeof(int)),
new DataColumn("UserName",typeof(string)),
new DataColumn("Pwd",typeof(string))});
return dt;
}
static void Main(string[] args)
{
Stopwatch sw = new Stopwatch();
for (int multiply = 0; multiply < 10; multiply++)
{
DataTable dt = leSchema();
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
DataRow r = ();
r[0] = count;
r[1] = ("User-{0}", count * multiply);
r[2] = ("Pwd-{0}", count * multiply);
(r);
}
();
DB(dt);
();
ine(("Elapsed Time is {0} Milliseconds", dMilliseconds));
}
ne();
}耗时图如下:
可见,使⽤Bulk后,效率和性能明显上升。使⽤Insert插⼊10万数据耗时72390,⽽现在使⽤Bulk插⼊100万数据才耗时17583。
最后再看看使⽤表值参数的效率,会另你⼤为惊讶的。
表值参数是SQL Server 2008新特性,简称TVPs。对于表值参数不熟悉的朋友,可以参考最新的book online,我也会另外写⼀篇关于表值参数的博客,不过此次不对表值参数的概念做过多的介绍。⾔归正传,看代码:代码如下:public static void TableValuedToDB(DataTable dt)
{
SqlConnection sqlConn = new SqlConnection(
tionStrings["ConnStr"].ConnectionString);
const string TSqlStatement =
"insert into BulkTestTable (Id,UserName,Pwd)" +
" SELECT , me," + " FROM @NewBulkTestTvp AS nc";
SqlCommand cmd = new SqlCommand(TSqlStatement, sqlConn);
SqlParameter catParam = hValue("@NewBulkTestTvp", dt);
ype = ured;
//表值参数的名字叫BulkUdt,在上⾯的建⽴测试环境的SQL中有。
me = "t";
try
{
();
if (dt != null && != 0)
{
eNonQuery();
}
}
catch (Exception ex)
{
throw ex;
}
finally
{
();
}
}
public static DataTable GetTableSchema()
{
DataTable dt = new DataTable();
ge(new DataColumn[]{
new DataColumn("Id",typeof(int)),
new DataColumn("UserName",typeof(string)),
new DataColumn("Pwd",typeof(string))});
return dt;
}
static void Main(string[] args)
{
Stopwatch sw = new Stopwatch();
for (int multiply = 0; multiply < 10; multiply++)
{
DataTable dt = leSchema();
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
DataRow r = ();
r[0] = count;
r[1] = ("User-{0}", count * multiply);
r[2] = ("Pwd-{0}", count * multiply);
(r);
}
();
aluedToDB(dt);
();
ine(("Elapsed Time is {0} Milliseconds", dMilliseconds));
}
ne();
}耗时图如下: ⽐Bulk还快5秒。此⽂原创⾃CSDN TJVictor
2023年6月21日发(作者:)
SQLServer批量插⼊数据的两种⽅法
SQLServer 批量插⼊数据的两种⽅法2009-07-27 19:31在SQL Server 中插⼊⼀条数据使⽤Insert语句,但是如果想要批量插⼊⼀堆数据的话,循环使⽤Insert不仅效率低,⽽且会导致SQL⼀系统性能问题。下⾯介绍SQL Server⽀持的两种批量数据插⼊⽅法:Bulk和表值参数(Table-Valued Parameters)。 运⾏下⾯的脚本,建⽴测试数据库和表值参数。代码如下:--Create DataBase
create database BulkTestDB;
go
use BulkTestDB;
go
--Create Table
Create table BulkTestTable(
Id int primary key,
UserName nvarchar(32),
Pwd varchar(16))
go
--Create Table Valued
CREATE TYPE BulkUdt AS TABLE
(Id int,
UserName nvarchar(32),
Pwd varchar(16))下⾯我们使⽤最简单的Insert语句来插⼊100万条数据,代码如下:代码如下:Stopwatch sw = new Stopwatch();
SqlConnection sqlConn = new SqlConnection(
tionStrings["ConnStr"].ConnectionString);//连接数据库
SqlCommand sqlComm = new SqlCommand(); SqlCommand sqlComm = new SqlCommand();
dText = ("insert into BulkTestTable(Id,UserName,Pwd)values(@p0,@p1,@p2)");//参数化SQL
("@p0", );
("@p1", ar);
("@p2", r);
dType = ;
tion = sqlConn;
();
try
{
//循环插⼊100万条数据,每次插⼊10万条,插⼊10次。
for (int multiply = 0; multiply < 10; multiply++)
{
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
ters["@p0"].Value = count;
ters["@p1"].Value = ("User-{0}", count * multiply);
ters["@p2"].Value = ("Pwd-{0}", count * multiply);
();
eNonQuery();
();
}
//每插⼊10万条数据后,显⽰此次插⼊所⽤时间
ine(("Elapsed Time is {0} Milliseconds", dMilliseconds));
}
}
catch (Exception ex)
{
throw ex;
}
finally
{
();
}
ne();耗时图如下:
由于运⾏过慢,才插⼊10万条就耗时72390 milliseconds,所以我就⼿动强⾏停⽌了。
下⾯看⼀下使⽤Bulk插⼊的情况:
bulk⽅法主要思想是通过在客户端把数据都缓存在Table中,然后利⽤SqlBulkCopy⼀次性把Table中的数据插⼊到数据库
代码如下:复制代码 代码如下:public static void BulkToDB(DataTable dt)
{
SqlConnection sqlConn = new SqlConnection(
tionStrings["ConnStr"].ConnectionString);
SqlBulkCopy bulkCopy = new SqlBulkCopy(sqlConn);
ationTableName = "BulkTestTable";
ize = ;
try
{
();
if (dt != null && != 0)
oServer(dt);
} }
catch (Exception ex)
{
throw ex;
}
finally
{
();
if (bulkCopy != null)
();
}
}
public static DataTable GetTableSchema()
{
DataTable dt = new DataTable();
ge(new DataColumn[]{
new DataColumn("Id",typeof(int)),
new DataColumn("UserName",typeof(string)),
new DataColumn("Pwd",typeof(string))});
return dt;
}
static void Main(string[] args)
{
Stopwatch sw = new Stopwatch();
for (int multiply = 0; multiply < 10; multiply++)
{
DataTable dt = leSchema();
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
DataRow r = ();
r[0] = count;
r[1] = ("User-{0}", count * multiply);
r[2] = ("Pwd-{0}", count * multiply);
(r);
}
();
DB(dt);
();
ine(("Elapsed Time is {0} Milliseconds", dMilliseconds));
}
ne();
}耗时图如下:
可见,使⽤Bulk后,效率和性能明显上升。使⽤Insert插⼊10万数据耗时72390,⽽现在使⽤Bulk插⼊100万数据才耗时17583。
最后再看看使⽤表值参数的效率,会另你⼤为惊讶的。
表值参数是SQL Server 2008新特性,简称TVPs。对于表值参数不熟悉的朋友,可以参考最新的book online,我也会另外写⼀篇关于表值参数的博客,不过此次不对表值参数的概念做过多的介绍。⾔归正传,看代码:代码如下:public static void TableValuedToDB(DataTable dt)
{
SqlConnection sqlConn = new SqlConnection(
tionStrings["ConnStr"].ConnectionString);
const string TSqlStatement =
"insert into BulkTestTable (Id,UserName,Pwd)" +
" SELECT , me," + " FROM @NewBulkTestTvp AS nc";
SqlCommand cmd = new SqlCommand(TSqlStatement, sqlConn);
SqlParameter catParam = hValue("@NewBulkTestTvp", dt);
ype = ured;
//表值参数的名字叫BulkUdt,在上⾯的建⽴测试环境的SQL中有。
me = "t";
try
{
();
if (dt != null && != 0)
{
eNonQuery();
}
}
catch (Exception ex)
{
throw ex;
}
finally
{
();
}
}
public static DataTable GetTableSchema()
{
DataTable dt = new DataTable();
ge(new DataColumn[]{
new DataColumn("Id",typeof(int)),
new DataColumn("UserName",typeof(string)),
new DataColumn("Pwd",typeof(string))});
return dt;
}
static void Main(string[] args)
{
Stopwatch sw = new Stopwatch();
for (int multiply = 0; multiply < 10; multiply++)
{
DataTable dt = leSchema();
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++)
{
DataRow r = ();
r[0] = count;
r[1] = ("User-{0}", count * multiply);
r[2] = ("Pwd-{0}", count * multiply);
(r);
}
();
aluedToDB(dt);
();
ine(("Elapsed Time is {0} Milliseconds", dMilliseconds));
}
ne();
}耗时图如下: ⽐Bulk还快5秒。此⽂原创⾃CSDN TJVictor
发布评论